
Compositionality Asynchrony

Compositionality and Asynchrony

Johannes Åman Pohjola
CSE, UNSW
Term 2 2022

1

Compositionality Asynchrony

Where we are at

Last lecture, we looked at proof methods for termination.

This lecture, we will conclude our examination of proof methods with compositional
techniques, and asynchronous systems.

2

Compositionality Asynchrony

Synchronous Transition Diagrams

Definition

A synchronous transition diagram is a parallel composition P1 ‖ . . . ‖ Pn of n
(sequential) transition diagrams P1, . . . , Pn called processes.
The processes Pi

do not share variables

communicate along channels C ,D, . . . connecting processes by way of

output statements C ⇐ e
for sending the value of expression e along channel C
input statements C ⇒ x
for receiving a value along channel C into variable x

NB

Today, we will assume that all communication channels are unidirectional, and shared
between at most 2 processes.

3

Compositionality Asynchrony

Synchronous Transition Diagrams

Definition

A synchronous transition diagram is a parallel composition P1 ‖ . . . ‖ Pn of n
(sequential) transition diagrams P1, . . . , Pn called processes.
The processes Pi

do not share variables

communicate along channels C ,D, . . . connecting processes by way of

output statements C ⇐ e
for sending the value of expression e along channel C
input statements C ⇒ x
for receiving a value along channel C into variable x

NB

Today, we will assume that all communication channels are unidirectional, and shared
between at most 2 processes.

4

Compositionality Asynchrony

Analysis of AFR and L&G

Both are only applicable to closed systems.

So we have to reason about the system as a whole, even including users modelled
as processes.

In other words: we can’t reason compositionally. Typically, non-compositional
proof methods don’t scale, and prevent proof re-use.

5

Compositionality Asynchrony

Analysis of AFR and L&G

Both are only applicable to closed systems.

So we have to reason about the system as a whole, even including users modelled
as processes.

In other words: we can’t reason compositionally. Typically, non-compositional
proof methods don’t scale, and prevent proof re-use.

6

Compositionality Asynchrony

Analysis of AFR and L&G

Both are only applicable to closed systems.

So we have to reason about the system as a whole, even including users modelled
as processes.

In other words: we can’t reason compositionally. Typically, non-compositional
proof methods don’t scale, and prevent proof re-use.

7

Compositionality Asynchrony

Quotes on Compositionality

de Roever et al.

A compositional proof method is a method by which the specification of a system can
be inferred from the specifications of its constituents, without additional information
about their internal structure.

F. B. Schneider, 1994

Compositionality is a red herring.

8

Compositionality Asynchrony

Quotes on Compositionality

de Roever et al.

A compositional proof method is a method by which the specification of a system can
be inferred from the specifications of its constituents, without additional information
about their internal structure.

F. B. Schneider, 1994

Compositionality is a red herring.

9

Compositionality Asynchrony

One more quote

Lamport (1997) – “Composition: a way to make proofs harder”

Systems are complicated. We master their complexity by building them from simpler
components. This suggests that to master the complexity of reasoning about systems,
we should prove properties of the separate components and then combine those
properties to deduce properties of the entire system. In concurrent systems, the
obvious choice of component is the process. So, compositional reasoning has come to
mean deducing properties of a system from properties of its processes.
I have long felt that this whole approach is rather silly. You don’t design a mutual
exclusion algorithm by first designing the individual processes and then hoping that
putting them together guarantees mutual exclusion.

10

Compositionality Asynchrony

Compositionally-Inductive Assertion Network

Key Idea

Handle communication with a special logical variable h, containing the history of all
communication, i.e. a sequence of pairs of channels and messages 〈C , x〉. Programs
shouldn’t write to h.

A local assertion network Q is compositionally-inductive for a sequential synchronous
transition diagram P = (L,T , s, t), written P ` Q, if

|= Q` ∧ b =⇒ Q`′ ◦ f for each `
b;f−−→ `′ ∈ T .

|= Q` ∧ b =⇒ Q`′ ◦ (f ◦ Jh← h · 〈C , e〉K), for each `
b;C⇐e;f−−−−−→ `′ ∈ T .

|= Q` ∧ b =⇒ ∀x (Q`′ ◦ (f ◦ Jh← h · 〈C , x〉K)), for each `
b;C⇒x ;f−−−−−→ `′ ∈ T .

11

Compositionality Asynchrony

Compositionally-Inductive Assertion Network

Key Idea

Handle communication with a special logical variable h, containing the history of all
communication, i.e. a sequence of pairs of channels and messages 〈C , x〉. Programs
shouldn’t write to h.

A local assertion network Q is compositionally-inductive for a sequential synchronous
transition diagram P = (L,T , s, t), written P ` Q, if

|= Q` ∧ b =⇒ Q`′ ◦ f for each `
b;f−−→ `′ ∈ T .

|= Q` ∧ b =⇒ Q`′ ◦ (f ◦ Jh← h · 〈C , e〉K), for each `
b;C⇐e;f−−−−−→ `′ ∈ T .

|= Q` ∧ b =⇒ ∀x (Q`′ ◦ (f ◦ Jh← h · 〈C , x〉K)), for each `
b;C⇒x ;f−−−−−→ `′ ∈ T .

12

Compositionality Asynchrony

Partial Correctness
Let Q be an assertion network for a process P and Qs and Qt be the assertions at the
start and end states. We have the Basic diagram rule:

P ` Q

{Qs} P {Qt}

We assume the history is empty initially with the Initialization rule:

{φ ∧ h = ε} P {ψ}
{φ} P {ψ}

..the Consequence rule allows pre/post-conditions to be strengthened/weakened::

φ⇒ φ′ {φ′} P {ψ′} ψ′ ⇒ ψ

{φ} P {ψ}

13

Compositionality Asynchrony

Partial Correctness
Let Q be an assertion network for a process P and Qs and Qt be the assertions at the
start and end states. We have the Basic diagram rule:

P ` Q

{Qs} P {Qt}

We assume the history is empty initially with the Initialization rule:

{φ ∧ h = ε} P {ψ}
{φ} P {ψ}

..the Consequence rule allows pre/post-conditions to be strengthened/weakened::

φ⇒ φ′ {φ′} P {ψ′} ψ′ ⇒ ψ

{φ} P {ψ}

14

Compositionality Asynchrony

Partial Correctness
Let Q be an assertion network for a process P and Qs and Qt be the assertions at the
start and end states. We have the Basic diagram rule:

P ` Q

{Qs} P {Qt}

We assume the history is empty initially with the Initialization rule:

{φ ∧ h = ε} P {ψ}
{φ} P {ψ}

..the Consequence rule allows pre/post-conditions to be strengthened/weakened::

φ⇒ φ′ {φ′} P {ψ′} ψ′ ⇒ ψ

{φ} P {ψ}

15

Compositionality Asynchrony

Parallel composition rule

Provided ψi only makes assertions about (a) local variables in Pi , and (b) the history
that directly involves channels used by Pi , we get this compositional Parallel
composition rule:

{φ1} P1 {ψ1} {φ2} P2 {ψ2}
{φ1 ∧ φ2} P1 ‖ P2 {ψ1 ∧ ψ2}

Observe that we don’t need to prove anything like interference freedom or generate a
proof obligation about each possible communication.

Notation

Define h|H as the history h filtered to only contain those pairs 〈C , x〉 where C ∈ H.

16

Compositionality Asynchrony

Parallel composition rule

Provided ψi only makes assertions about (a) local variables in Pi , and (b) the history
that directly involves channels used by Pi , we get this compositional Parallel
composition rule:

{φ1} P1 {ψ1} {φ2} P2 {ψ2}
{φ1 ∧ φ2} P1 ‖ P2 {ψ1 ∧ ψ2}

Observe that we don’t need to prove anything like interference freedom or generate a
proof obligation about each possible communication.

Notation

Define h|H as the history h filtered to only contain those pairs 〈C , x〉 where C ∈ H.

17

Compositionality Asynchrony

Example 2 once more

s1 l1 t1

s2 l2 t2

C ⇐ 1 C ⇐ 2

C ⇒ x C ⇒ x

18

Compositionality Asynchrony

Example 2 once more

s1 l1 t1

s2 l2 t2

C ⇐ 1 C ⇐ 2

C ⇒ x C ⇒ x

h|{C} = ε h|{C} = 〈C , 1〉 h|{C} = 〈C , 1〉 · 〈C , 2〉

h|{C} = ε h|{C} = 〈C , x〉 ∃y . h|{C} = 〈C , y〉 · 〈C , x〉

19

Compositionality Asynchrony

Example 2 once more cont’d

For the two output transitions we need to show

|= h|{C} = ε =⇒ h|{C} = 〈C , 1〉 ◦ Jh← h · 〈C , 1〉K (1)

|= h|{C} = 〈C , 1〉 =⇒ h|{C} = 〈C , 1〉 · 〈C , 2〉 ◦ Jh← h · 〈C , 2〉K (2)

which is obvious; and for the two input transitions

|= h|{C} = ε =⇒ ∀x
(
h|{C} = 〈C , x〉 ◦ Jh← h · 〈C , x〉K

)
(3)

|= h|{C} = 〈C , x〉 =⇒ ∀x ∃y (h|{C} = 〈C , y〉 · 〈C , x〉 ◦ Jh← h · 〈C , x〉K) (4)

which also works out nicely.

20

Compositionality Asynchrony

Example 2 once more cont’d
Using the Basic diagram rule we may now deduce

{h|{C} = ε} C ⇐ 1;C ⇐ 2 {h|{C} = 〈C , 1〉 · 〈C , 2〉}
{h|{C} = ε} C ⇒ x ;C ⇒ x {∃y . h|{C} = 〈C , y〉 · 〈C , x〉}

before applying the parallel composition rule to obtain

{h|{C} = ε} P {h|{C} = 〈C , 1〉 · 〈C , 2〉 ∧ ∃y . h|{C} = 〈C , y〉 · 〈C , x〉}

which implies (via the rule of consequence):

{h = ε} P {x = 2}

and finally the initialisation rule takes us to

{True} P {x = 2}

21

Compositionality Asynchrony

Example 2 once more cont’d
Using the Basic diagram rule we may now deduce

{h|{C} = ε} C ⇐ 1;C ⇐ 2 {h|{C} = 〈C , 1〉 · 〈C , 2〉}
{h|{C} = ε} C ⇒ x ;C ⇒ x {∃y . h|{C} = 〈C , y〉 · 〈C , x〉}

before applying the parallel composition rule to obtain

{h|{C} = ε} P {h|{C} = 〈C , 1〉 · 〈C , 2〉 ∧ ∃y . h|{C} = 〈C , y〉 · 〈C , x〉}

which implies (via the rule of consequence):

{h = ε} P {x = 2}

and finally the initialisation rule takes us to

{True} P {x = 2}

22

Compositionality Asynchrony

Example 2 once more cont’d
Using the Basic diagram rule we may now deduce

{h|{C} = ε} C ⇐ 1;C ⇐ 2 {h|{C} = 〈C , 1〉 · 〈C , 2〉}
{h|{C} = ε} C ⇒ x ;C ⇒ x {∃y . h|{C} = 〈C , y〉 · 〈C , x〉}

before applying the parallel composition rule to obtain

{h|{C} = ε} P {h|{C} = 〈C , 1〉 · 〈C , 2〉 ∧ ∃y . h|{C} = 〈C , y〉 · 〈C , x〉}

which implies (via the rule of consequence):

{h = ε} P {x = 2}

and finally the initialisation rule takes us to

{True} P {x = 2}

23

Compositionality Asynchrony

Example 2 once more cont’d
Using the Basic diagram rule we may now deduce

{h|{C} = ε} C ⇐ 1;C ⇐ 2 {h|{C} = 〈C , 1〉 · 〈C , 2〉}
{h|{C} = ε} C ⇒ x ;C ⇒ x {∃y . h|{C} = 〈C , y〉 · 〈C , x〉}

before applying the parallel composition rule to obtain

{h|{C} = ε} P {h|{C} = 〈C , 1〉 · 〈C , 2〉 ∧ ∃y . h|{C} = 〈C , y〉 · 〈C , x〉}

which implies (via the rule of consequence):

{h = ε} P {x = 2}

and finally the initialisation rule takes us to

{True} P {x = 2}

24

Compositionality Asynchrony

Asynchrony

Consider a process P that sends a file a on the channel C to the process Q, which
saves it to b.

ps

pt

qs

qt

a[i] 6= EOF;C ⇐ a[i]; i ← i + 1

a[i] = EOF;C ⇐ EOF; i ← i + 1

C ⇒ b[j]; j ← j + 1

j > 0 ∧ b[j − 1] = EOF

How do we verify this if C is asynchronous?

25

Compositionality Asynchrony

Asynchrony

Consider a process P that sends a file a on the channel C to the process Q, which
saves it to b.

ps

pt

qs

qt

a[i] 6= EOF;C ⇐ a[i]; i ← i + 1

a[i] = EOF;C ⇐ EOF; i ← i + 1

C ⇒ b[j]; j ← j + 1

j > 0 ∧ b[j − 1] = EOF

How do we verify this if C is asynchronous?

26

Compositionality Asynchrony

Convert to Synchronous

ps

pt

qs

qt

a[i] 6= EOF;A⇐ a[i]; i ← i + 1

a[i] = EOF;A⇐ EOF; i ← i + 1

B ⇒ b[j]; j ← j + 1

j > 0 ∧ b[j − 1] = EOF

C

A⇒ x ; q ← q · x

q 6= ε;B ⇐ head(q); q ← tail(q)

27

Compositionality Asynchrony

Convert to Synchronous

ps

pt

qs

qt

a[i] 6= EOF;A⇐ a[i]; i ← i + 1

a[i] = EOF;A⇐ EOF; i ← i + 1

B ⇒ b[j]; j ← j + 1

j > 0 ∧ b[j − 1] = EOF

C

A⇒ x ; q ← q · x

q 6= ε;B ⇐ head(q); q ← tail(q)28

Compositionality Asynchrony

Compositionally
By adding an extra process with two synchronous channels to explicitly manage the
queue, we convert this asynchronous system to a synchronous one.
We can now use AFR, Levin and Gries or the compositional method.

Using the
compositional method, we have the desired postcondition:

∃i . a[i] = EOF ∧ a[0 . . . i] = b[0 . . . i]

And the following assertion network:

Q(ps) ≡ ĥ|{A} = a[0 . . . i] ∧ EOF /∈ a[0 . . . i]

Q(pt) ≡ ĥ|{A} = a[0 . . . i] ∧ EOF /∈ a[0 . . . i − 1] ∧ a[i − 1] = EOF

Q(qs) ≡ ĥ|{B} = b[0 . . . j]

Q(qt) ≡ ĥ|{B} = b[0 . . . j] ∧ b[j − 1] = EOF

Q(C) ≡ ĥ|{A} = ĥ|{B} · q

Proof obligations will be informally described.

29

Compositionality Asynchrony

Compositionally
By adding an extra process with two synchronous channels to explicitly manage the
queue, we convert this asynchronous system to a synchronous one.
We can now use AFR, Levin and Gries or the compositional method. Using the
compositional method, we have the desired postcondition:

∃i . a[i] = EOF ∧ a[0 . . . i] = b[0 . . . i]

And the following assertion network:

Q(ps) ≡ ĥ|{A} = a[0 . . . i] ∧ EOF /∈ a[0 . . . i]

Q(pt) ≡ ĥ|{A} = a[0 . . . i] ∧ EOF /∈ a[0 . . . i − 1] ∧ a[i − 1] = EOF

Q(qs) ≡ ĥ|{B} = b[0 . . . j]

Q(qt) ≡ ĥ|{B} = b[0 . . . j] ∧ b[j − 1] = EOF

Q(C) ≡ ĥ|{A} = ĥ|{B} · q

Proof obligations will be informally described.

30

Compositionality Asynchrony

Compositionally
By adding an extra process with two synchronous channels to explicitly manage the
queue, we convert this asynchronous system to a synchronous one.
We can now use AFR, Levin and Gries or the compositional method. Using the
compositional method, we have the desired postcondition:

∃i . a[i] = EOF ∧ a[0 . . . i] = b[0 . . . i]

And the following assertion network:

Q(ps) ≡ ĥ|{A} = a[0 . . . i] ∧ EOF /∈ a[0 . . . i]

Q(pt) ≡ ĥ|{A} = a[0 . . . i] ∧ EOF /∈ a[0 . . . i − 1] ∧ a[i − 1] = EOF

Q(qs) ≡ ĥ|{B} = b[0 . . . j]

Q(qt) ≡ ĥ|{B} = b[0 . . . j] ∧ b[j − 1] = EOF

Q(C) ≡ ĥ|{A} = ĥ|{B} · q

Proof obligations will be informally described.
31

Compositionality Asynchrony

What Now?

If time allows, we’ll take a brief detour into the world of process algebra, a high level
formalism for describing concurrent systems.

Either way, we’ll then discuss distributed algorithms.

32

	Compositionality
	Compositionality

	Asynchrony
	

